Structural limitations for optimizing garnet-type solid electrolytes: a perspective.

نویسنده

  • Wolfgang G Zeier
چکیده

Lithium ion batteries exhibit the highest energy densities of all battery types and are therefore an important technology for energy storage in every day life. Today's commercially available batteries employ organic polymer lithium conducting electrolytes, leading to multiple challenges and safety issues such as poor chemical stability, leakage and flammability. The next generation lithium ion batteries, namely all solid-state batteries, can overcome these limitations through employing a ceramic Li(+) conducting electrolyte. In the past decade, there has been a major focus on the structural and ionic transport properties of lithium-conducting garnets, and the extensive research efforts have led to a thorough understanding of the structure-property relationships in this class of materials. However, further improvement seems difficult due to structural limitations. The purpose of this Perspective article is to provide a brief structural overview of Li conducting garnets and the structural influence on the optimization of Li-ionic conductivities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of Lithium-Stuffed Garnet-Type Oxide Solid Electrolytes with High Ionic Conductivity for Application to All-Solid-State Batteries

Citation: Inada R, Yasuda S, Tojo M, Tsuritani K, Tojo T and Sakurai Y (2016) Development of LithiumStuffed Garnet-Type Oxide Solid Electrolytes with High Ionic Conductivity for Application to All-Solid-State Batteries. Front. Energy Res. 4:28. doi: 10.3389/fenrg.2016.00028 Development of lithium-stuffed garnet-Type Oxide solid electrolytes with high ionic conductivity for application to all-so...

متن کامل

Recent Advances in Inorganic Solid Electrolytes for Lithium Batteries

Present address: Xiao-Liang Wang, Seeo, Inc., 3906 Trust Way, Hayward, CA 94545, USA The review presents an overview of the recent advances in inorganic solid lithium ion conductors, which are of great interest as solid electrolytes in all-solid-state lithium batteries. It is focused on two major categories: crystalline electrolytes and glass-based electrolytes. Important systems such as thio-L...

متن کامل

Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface

Solid-state batteries are a promising option toward high energy and power densities due to the use of lithium (Li) metal as an anode. Among all solid electrolyte materials ranging from sulfides to oxides and oxynitrides, cubic garnet-type Li7La3Zr2O12 (LLZO) ceramic electrolytes are superior candidates because of their high ionic conductivity (10-3 to 10-4 S/cm) and good stability against Li me...

متن کامل

Negating interfacial impedance in garnet-based solid-state Li metal batteries.

Garnet-type solid-state electrolytes have attracted extensive attention due to their high ionic conductivity, approaching 1 mS cm-1, excellent environmental stability, and wide electrochemical stability window, from lithium metal to ∼6 V. However, to date, there has been little success in the development of high-performance solid-state batteries using these exceptional materials, the major chal...

متن کامل

Structural and Electrochemical Consequences of Al and Ga Cosubstitution in Li7La3Zr2O12 Solid Electrolytes

Several "Beyond Li-Ion Battery" concepts such as all solid-state batteries and hybrid liquid/solid systems envision the use of a solid electrolyte to protect Li-metal anodes. These configurations are very attractive due to the possibility of exceptionally high energy densities and high (dis)charge rates, but they are far from being realized practically due to a number of issues including high i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dalton transactions

دوره 43 43  شماره 

صفحات  -

تاریخ انتشار 2014